展开全部

主编推荐语

《多肽合成副反应(英文版)》是作者在十多年多肽合成第一手经验的基础之上,结合大量相关文献完成的。

内容简介

全书系统地介绍了多肽合成中最常见的副反应,其产生的机理,以及相应的解决方案。其中很多副反应的产生是在GMP生产条件下被发现并加以研究的,其形成机理与生产工艺的开发紧密相关。多肽杂质的形成对于多肽类API的GMP生产具有非常关键的影响,因此检测和分析多肽杂质对成功的API工业生产至关重要。而掌握多肽副反应产生的机理、分析手段及相应的优化方案,则是整个多肽API工艺开发和生产环节中的核心要素。

《多肽合成副反应(英文版)》可供学术界与工业界相关人员参考使用。

目录

  • 版权信息
  • 内容简介
  • Preface
  • Chapter 1 Peptide Fragmentation/Deletion Side Reactions
  • 1.1 ACIDOLYSIS OF PEPTIDES CONTAINING N-Ac-N-alkyl-Xaa MOTIF
  • 1.2 Des-Ser/Thr IMPURITIES INDUCED BY O -acyl ISODIPEPTIDE Boc-Ser/Thr(Fmoc-Xaa)-OH AS BUILDING BLOCK FOR PEPTIDE SYNTHESIS
  • 1.3 ACIDOLYSIS OF - N -acyl- N -alkyl-Aib-Xaa- BOND
  • 1.4 ACIDOLYSIS OF -Asp-Pro- BOND
  • 1.5 AUTODEGRADATION OF PEPTIDE N -TERMINAL H-His-Pro-Xaa- MOIETY
  • 1.6 ACIDOLYSIS OF THE PEPTIDE C -TERMINAL N -Me-Xaa
  • 1.7 ACIDOLYSIS OF PEPTIDES WITH N -TERMINAL FITC MODIFICATION
  • 1.8 ACIDOLYSIS OF THIOAMIDE PEPTIDE
  • 1.9 DEGUANIDINATION SIDE REACTION ON Arg
  • 1.10 DKP (2,5-DIKETOPIPERAZINE) FORMATION
  • REFERENCES
  • Chapter 2 β -Elimination Side Reactions
  • 2.1 β -ELIMINATION OF Cys SULFHYDRYL SIDE CHAIN
  • 2.2 β -ELIMINATION OF PHOSPHORYLATED Ser/Thr
  • REFERENCES
  • Chapter 3 Peptide Global Deprotection/Scavenger-Induced Side Reactions
  • 3.1 TERT-BUTYLATION SIDE REACTION ON Trp DURING PEPTIDE GLOBAL DEPROTECTION
  • 3.2 Trp ALKYLATION BY RESIN LINKER CATIONS DURING PEPTIDE CLEAVAGE/GLOBAL DEPROTECTION
  • 3.3 FORMATION OF Trp-EDT AND Trp-EDT-TFA ADDUCT IN PEPTIDE GLOBAL DEPROTECTION
  • 3.4 Trp DIMERIZATION SIDE REACTION DURING PEPTIDE GLOBAL DEPROTECTION
  • 3.5 Trp REDUCTION DURING PEPTIDE GLOBAL DEPROTECTION
  • 3.6 Cys ALKYLATION DURING PEPTIDE GLOBAL DEPROTECTION
  • 3.7 FORMATION OF Cys-EDT ADDUCTS IN PEPTIDE GLOBAL DEPROTECTION REACTION
  • 3.8 PEPTIDE SULFONATION IN SIDE CHAIN GLOBAL DEPROTECTION REACTION
  • 3.9 PREMATURE Acm CLEAVAGE OFF Cys(Acm) AND Acm S→ O MIGRATION DURING PEPTIDE GLOBAL DEPROTECTION
  • 3.10 METHIONINE ALKYLATION DURING PEPTIDE SIDE CHAIN GLOBAL DEPROTECTION WITH DODT AS SCAVENGER
  • 3.11 THIOANISOLE-INDUCED SIDE REACTIONS IN PEPTIDE SIDE CHAIN GLOBAL DEPROTECTION
  • REFERENCES
  • Chapter 4 Peptide Rearrangement Side Reactions
  • 4.1 ACID CATALYZED ACYL N → O MIGRATION AND THE SUBSEQUENT PEPTIDE ACIDOLYSIS
  • 4.2 BASE CATALYZED ACYL O → N MIGRATION
  • 4.3 His-Nim-INDUCED ACYL MIGRATION
  • REFERENCES
  • Chapter 5 Side Reactions Upon Amino Acid/Peptide Carboxyl Activation
  • 5.1 FORMATION OF N -ACYLUREA UPON PEPTIDE/AMINO ACID-CARBOXYL ACTIVATION BY DIC
  • 5.2 URONIUM/GUANIDINIUM SALT COUPLING REAGENTS-INDUCED AMINO GROUP GUANIDINATION SIDE REACTIONS
  • 5.3 δ -LACTAM FORMATION UPON Arg ACTIVATION REACTION
  • 5.4 NCA FORMATION UPON Boc/Z-AMINO ACID ACTIVATION
  • 5.5 DEHYDRATION OF SIDE CHAIN-UNPROTECTED Asn/Gln DURING CARBOXYL-ACTIVATION
  • 5.6 FORMATION OF H- β -Ala-OSu FROM HOSu-CARBODIIMIDE REACTION DURING AMINO ACID CARBOXYL-ACTIVATION
  • 5.7 BENZOTRIAZINONE RING OPENING AND PEPTIDE CHAIN TERMINATION DURING CARBODIIMIDE/HOOBt MEDIATED COUPLING REACTIONS
  • 5.8 PEPTIDE CHAIN TERMINATION THROUGH THE FORMATION OF PEPTIDE N -TERMINAL UREA IN CDI-MEDIATED COUPLING REACTION
  • 5.9 GUANIDINO OR HYDANTOIN-2-IMIDE FORMATION FROM CARBODIIMIDE AND Nα GROUP ON AMINO ACID/PEPTIDE
  • 5.10 SIDE REACTIONS-INDUCED BY CURTIUS REARRANGEMENT ON PEPTIDE ACYL AZIDE
  • 5.11 FORMATION OF PYRROLIDINAMIDE-INDUCED BY PYRROLIDINE IMPURITIES IN PHOSPHONIUM SALT
  • REFERENCES
  • Chapter 6 Intramolecular Cyclization Side Reactions
  • 6.1 ASPARTIMIDE FORMATION
  • 6.1.1 Factors That Infl uence Aspartimide Formation
  • 6.1.2 Solutions for Aspartimide Formation
  • 6.2 Asn/Gln DEAMIDATION AND OTHER RELEVANT SIDE REACTIONS
  • 6.2.1 Mechanism of Asn/Gln Deamidation
  • 6.2.2 Factors Impacting on Asn/Gln Deamidation
  • 6.2.3 Infl uences of Asn/Gln Deamidation on Peptide Chemical Synthesis
  • 6.3 PYROGLUTAMATE FORMATION
  • 6.4 HYDANTOIN FORMATION
  • 6.5 SIDE REACTIONS ON N -TERMINAL Cys(Cam) AND N -BROMOACETYLATED PEPTIDE
  • REFERENCES
  • Chapter 7 Side Reactions on Amino Groups in Peptide Synthesis
  • 7.1 N α-ACETYLATION SIDE REACTIONS
  • 7.2 TRIFLUOROACETYLATION SIDE REACTIONS
  • 7.3 FORMYLATION SIDE REACTIONS
  • 7.3.1 Trp(For)-Induced Peptide Formylation
  • 7.3.2 Formic Acid-Induced Peptide Formylation
  • 7.3.3 DMF-Induced Peptide Formylation
  • 7.4 PEPTIDE N -ALKYLATION SIDE REACTIONS
  • 7.4.1 Chloromethyl Resin Induced Peptide N -Alkylation Side Reactions
  • 7.4.2 Peptide N -Alkylation During Deblocking of N α-Urethane Protecting Group
  • 7.4.3 Peptide N -Alkylation During Global Deprotection
  • 7.4.4 N -Alkylation Side Reaction on N -Terminal His via Acetone-Mediated Enamination
  • 7.5 SIDE REACTIONS DURING AMINO ACID Nα-PROTECTION(Fmoc-OSu INDUCED Fmoc-β -Ala-OH AND Fmoc- β -Ala-AA-OH DIPEPTIDE FORMATION)
  • REFERENCES
  • Chapter 8 Side Reactions on Hydroxyl and Carboxyl Groups in Peptide Synthesis
  • 8.1 SIDE REACTIONS ON Asp/Glu SIDE CHAIN AND PEPTIDE BACKBONE CARBOXYLATE
  • 8.1.1 Base-Catalyzed Asp/Glu(OBzl) Transesterifi cation Side Reaction During the Loading of Chloromethyl Resin
  • 8.1.2 Esterifi cation Side Reactions on Asp/Glu During Peptidyl Resin Cleavage and Product Purifi cation
  • 8.2 SIDE REACTIONS ON Ser/Thr SIDE CHAIN HYDROXYL GROUPS
  • 8.2.1 Alkylation Side Reactions on Ser/Thr Side Chain Hydroxyl Groups
  • 8.2.2 Acylation Side Reactions on Ser/Thr Side Chain Hydroxyl Groups
  • 8.2.3 β -Elimination Side Reactions on Ser/Thr
  • 8.2.4 N -Terminal Ser/Thr-Induced Oxazolidone Formation Side Reactions
  • 8.2.5 Ser/Thr-Induced Retro Aldol Cleavage Side Reaction
  • REFERENCES
  • Chapter 9 Peptide Oxidation/Reduction Side Reactions
  • 9.1 OXIDATION SIDE REACTIONS ON Cys
  • 9.2 OXIDATION SIDE REACTIONS ON Met
  • 9.3 OXIDATION SIDE REACTIONS ON Trp
  • 9.4 OXIDATION SIDE REACTIONS ON OTHER AMINO ACIDS AND AT NONSYNTHETIC STEPS
  • 9.5 PEPTIDE REDUCTION SIDE REACTIONS
  • REFERENCES
  • Chapter 10 Redundant Amino Acid Coupling Side Reactions
  • 10.1 DIPEPTIDE FORMATION DURING AMINO ACID Nα-Fmoc DERIVATIZATION
  • 10.2 REDUNDANT AMINO ACID COUPLING VIA PREMATURE Fmoc DEPROTECTION
  • 10.2.1 Lys- N ε-Induced Fmoc Premature Cleavage
  • 10.2.2 N α-Proline-Induced Fmoc Premature Cleavage
  • 10.2.3 DMF/NMP-Induced Fmoc Premature Cleavage
  • 10.2.4 Residual Piperidine-Induced Fmoc Premature Cleavage
  • 10.2.5 DMAP/DIEA-Induced Fmoc Premature Cleavage
  • 10.2.6 Hydrogenation-Induced Fmoc Premature Cleavage
  • 10.2.7 Fmoc Deblocking in the Starting Material
  • 10.3 REDUNDANT AMINO ACID COUPLING INDUCED BY NCA FORMATION
  • 10.4 His- N imPROMOTED Gly REDUNDANT INCORPORATION
  • 10.5 REDUNDANT COUPLING INDUCED BY THE UNDESIRED AMINO ACID-CTC RESIN CLEAVAGE
  • 10.6 REDUNDANT AMINO ACID COUPLING INDUCED BY INSUFFICIENT RESIN RINSING
  • 10.7 REDUNDANT AMINO ACID COUPLING INDUCED BY OVERACYLATION SIDE REACTION
  • REFERENCES
  • Chapter 11 Peptide Racemization
  • 11.1 PEPTIDE RACEMIZATION MECHANISM
  • 11.1.1 Peptide Racemization via Oxazol-5(4 H )-one Formation
  • 11.1.2 Peptide Racemization via Enolate Formation
  • 11.1.3 Peptide Racemization via Direct H αAbstraction
  • 11.1.4 Peptide Racemization via Aspartimide Formation
  • 11.1.5 Acid-Catalyzed Peptide Racemization
  • 11.2 RACEMIZATION IN PEPTIDE SYNTHESIS
  • 11.2.1 Amino Acids with a High Tendency of Racemization in Peptide Synthesis
  • 11.2.2 DMAP-Induced Racemization
  • 11.2.3 Microwave Irradiation-Induced Racemization
  • 11.2.4 Racemization During Peptide Segment Condensation
  • 11.3 STRATEGIES TO SUPPRESS RACEMIZATION IN PEPTIDE SYNTHESIS
  • 11.3.1 Amino Acid N α-Protecting Group
  • 11.3.2 Amino Acid Side Chain Protecting Group
  • 11.3.3 Coupling Reagent
  • 11.3.4 Coupling Tactics
  • 11.3.5 Solvent
  • 11.3.6 Base
  • 11.3.7 Amino Acid Activation Mode
  • 11.3.8 Temperature
  • 11.3.9 Cu(II) Salt Additive
  • REFERENCES
  • Chapter 12 Side Reactions in Peptide Phosphorylation
  • 12.1 FORMATION OF H -PHOSPHONATE SIDE PRODUCT
  • 12.2 FORMATION OF PYROPHOSPHATE SIDE PRODUCT
  • REFERENCES
  • Chapter 13 Cys Disulfide-Related Side Reactions in Peptide Synthesis
  • 13.1 DISULFIDE SCRAMBLING VIA THIOL-DISULFIDE EXCHANGE
  • 13.2 DISULFIDE DEGRADATION AND CONSEQUENT TRISULFIDE AND LANTHIONINE FORMATION
  • 13.2.1 Disulfi de Degradation Pattern
  • 13.2.2 Trisulfi de Formation
  • 13.2.3 Lanthionine Formation
  • REFERENCES
  • Chapter 14 Solvent-Induced Side Reactions in Peptide Synthesis
  • 14.1 DCM-INDUCED SIDE REACTION
  • 14.2 DMF-INDUCED SIDE REACTION
  • 14.2.1 DMF-Induced N -Formylpiperidine Formation
  • 14.2.2 DMF-Induced Formylation Side Reactions
  • 14.2.3 DMF-Induced Acid Chloride Formation Side Reactions
  • 14.3 METHANOL/ETHANOL-INDUCED SIDE REACTIONS
  • 14.3.1 Methanol-Induced Esterifi cation Side Reactions
  • 14.3.2 Methanol-Induced N -Alkylation Side Reactions in Catalytic Hydrogenation
  • 14.4 ACETONITRILE-INDUCED SIDE REACTION
  • 14.5 ACETONE-INDUCED SIDE REACTION
  • 14.6 MTBE-INDUCED SIDE REACTION
  • 14.7 TFE-INDUCED SIDE REACTION
  • REFERENCES
  • Appendix I Molecular Weight Deviation of Peptide Impurity
  • REFERENCE
  • Appendix II List of Abbreviations
  • Subject Index
展开全部

评分及书评

尚无评分
目前还没人评分

出版方

清华大学出版社

清华大学出版社成立于1980年6月,是由教育部主管、清华大学主办的综合出版单位。植根于“清华”这座久负盛名的高等学府,秉承清华人“自强不息,厚德载物”的人文精神,清华大学出版社在短短二十多年的时间里,迅速成长起来。清华大学出版社始终坚持弘扬科技文化产业、服务科教兴国战略的出版方向,把出版高等学校教学用书和科技图书作为主要任务,并为促进学术交流、繁荣出版事业设立了多项出版基金,逐渐形成了以出版高水平的教材和学术专著为主的鲜明特色,在教育出版领域树立了强势品牌。