科技
类型
可以朗读
语音朗读
93千字
字数
2023-01-01
发行日期
展开全部
主编推荐语
本书由人工智能技术专业教师和英特尔FPGA中国创新中心的工程师们合力编写,讲解了大量的具体程序案例,涵盖大部分机器学习算法。
内容简介
机器学习是人工智能的一个方向。它是一门多领域交叉学科,涉及概率论、统计学、矩阵论、神经网络、计算机等多门学科。其目标是使用计算机模拟或实现人类学习活动,从现有大量的数据中学习,利用经验不断改善系统性能。机器学习步骤一般分为获取数据、数据预处理、建立模型、模型评估和预测。
本书共6章。
第1章节主要介绍机器学习的基本概念及其发展史、机器学习分类、常见机器学习算法及其特点;
第2章搭建机器学习开发环境,主要包括Anaconda\PyCham\Python软件的安装及使用,以及常见机器学习库的介绍和安装使用方法;
第3章介绍监督学习的4个经典算法:线性回归、决策树、k近邻和支持向量机算法,其重点在算法的应用;
第4章介绍主成分分析降维算法、K-means聚类算法;
第5章介绍人工神经网络基础,并通过房价预测和手写数字识别实例进行验证;
第6章介绍强化学习的基本概念,有模型学习和无模型学习,最后介绍了Q-Learning算法和Sarsa算法。
目录
- 版权信息
- 内容简介
- 编委会
- 前言
- 第1章 机器学习介绍
- 1.1 机器学习简介
- 1.1.1 机器学习的基本概念
- 1.1.2 机器学习的发展历史
- 1.2 机器学习的分类及典型算法
- 1.2.1 机器学习的分类
- 1.2.2 监督学习
- 1.2.3 非监督学习
- 1.2.4 半监督学习
- 1.2.5 强化学习
- 本章小结
- 习题
- 第2章 基于Python语言的机器学习环境搭建与配置
- 2.1 机器学习相关软件介绍
- 2.1.1 机器学习开发语言
- 2.1.2 机器学习开发工具
- 2.2 机器学习开发环境搭建
- 2.2.1 Python的安装及使用
- 2.2.2 Anaconda的安装及使用
- 2.2.3 PyCharm的安装及使用
- 2.3 常见机器学习库函数功能介绍
- 2.3.1 基础科学计算库(NumPy)
- 2.3.2 科学计算工具集(Scipy)
- 2.3.3 数据分析库(Pandas)
- 2.3.4 图形绘制库(Matplotlib)
- 2.3.5 机器学习常用算法库(Scikit-learn)
- 本章小结
- 习题
- 第3章 监督学习
- 3.1 线性回归算法
- 3.1.1 常用损失函数
- 3.1.2 最小二乘法
- 3.1.3 梯度下降法
- 3.1.4 线性回归算法实例
- 3.2 决策树算法
- 3.2.1 分类准则
- 3.2.2 ID3算法
- 3.2.3 C4.5算法
- 3.2.4 CART算法
- 3.2.5 决策树算法实例
- 3.3 k近邻算法
- 3.3.1 k值的选取及特征归一化
- 3.3.2 kd树
- 3.3.3 k近邻算法实例
- 3.4 支持向量机算法
- 3.4.1 线性可分性
- 3.4.2 对偶问题
- 3.4.3 核函数
- 3.4.4 软间隔
- 3.4.5 支持向量机算法实例
- 本章小结
- 习题
- 第4章 非监督学习
- 4.1 非监督学习概述
- 4.1.1 非监督学习的基本概念
- 4.1.2 非监督学习的分类
- 4.1.3 非监督学习的特点
- 4.1.4 非监督学习的应用
- 4.2 主成分分析降维算法
- 4.2.1 数据降维介绍
- 4.2.2 PCA算法介绍
- 4.2.3 PCA算法求解步骤
- 4.2.4 PCA算法实例
- 4.3 K-means聚类算法
- 4.3.1 聚类算法简介
- 4.3.2 K-means算法介绍
- 4.3.3 K-means算法求解步骤
- 4.3.4 K-means算法实例
- 本章小结
- 习题
- 第5章 人工神经网络
- 5.1 人工神经网络概述
- 5.1.1 人工神经网络的发展历程
- 5.1.2 人工神经网络基础
- 5.1.3 人工神经网络模型
- 5.1.4 人工神经网络的优点及应用
- 5.2 房价预测实例
- 5.2.1 房价预测模型构建
- 5.2.2 房价预测网络构建
- 5.3 手写数字识别实例
- 5.3.1 手写数字识别简介
- 5.3.2 手写数字识别网络构建
- 本章小结
- 习题
- 第6章 强化学习
- 6.1 强化学习概述
- 6.1.1 强化学习的基本概念
- 6.1.2 强化学习的发展历史
- 6.1.3 强化学习的分类
- 6.1.4 强化学习的特点及应用
- 6.2 强化学习基础
- 6.2.1 马尔可夫决策过程
- 6.2.2 贪心算法
- 6.3 有模型学习和无模型学习
- 6.3.1 有模型学习
- 6.3.2 无模型学习
- 6.4 强化学习实例
- 6.4.1 Q-Learning算法
- 6.4.2 Sarsa算法
- 本章小结
- 习题
展开全部
出版方
电子工业出版社
电子工业出版社成立于1982年10月,是国务院独资、工信部直属的中央级科技与教育出版社,是专业的信息技术知识集成和服务提供商。经过三十多年的建设与发展,已成为一家以科技和教育出版、期刊、网络、行业支撑服务、数字出版、软件研发、软科学研究、职业培训和教育为核心业务的现代知识服务集团。出版物内容涵盖了电子信息技术的各个分支及工业技术、经济管理、科普与少儿、社科人文等领域,综合出版能力位居全国出版行业前列。