展开全部

主编推荐语

本书基于均匀化方法对MSTO设计开展了讨论分析和研究。

内容简介

本书首先,基于逆向均匀化方法设计了具有不同极限属性的一系列梯度基础点阵结构,进而提出了一种极限各向异性点阵结构的构建和参数化表征的方法,并在此基础上实施了三维结构件的点阵结构填充拓扑优化设计;

然后进一步地,将点阵结构的材料属性域扩展,引入实体和空隙材料,提出了一种基于有序多相材料插值模型的多尺度LSHS拓扑优化设计方法,实现了LSHS设计中多参数定义的多相材料协同优化;

之后,将多变量点阵结构参数场优化技术引入自由拓扑微结构的多尺度设计方法,并以多变量点阵结构参数场优化结果作为宏观结构响应特征,提出了一种综合反映宏观结构局部承载量级和主应力状态的聚类优化策略,并以此实现了自由拓扑微结构的综合聚类MSTO设计;

最后,针对点阵结构的陶瓷材料、纤维复材、和树脂基材料增材制造,从可制造性角度和强度设计原则对已建立点阵结构拓扑优化方法进行改进与创新,并对改进后的优化结果进行增材试制及性能验证。

目录

  • 版权信息
  • 内容简介
  • 前言
  • Chapter 1 Introduction to Topology Optimization for Additive Manufacturing
  • 1.1 Introduction
  • 1.2 The fundamentals of density-based and homogenization-based topology optimization
  • 1.2.1 Density-based method
  • 1.2.2 SIMP
  • 1.2.3 Homogenization
  • 1.2.4 Inverse homogenization
  • 1.3 Hotspots in topology optimization for AM
  • 1.3.1 Optimization design of multiscale structures
  • 1.3.2 Lattice structure topology optimization
  • 1.3.3 Topology optimization considering AM constraints
  • 1.4 Outline of this book
  • References
  • Chapter 2 A Novel Lattice Structure Topology Optimization Method with Extreme Anisotropic Lattice Properties
  • 2.1 Introduction
  • 2.2 Topology optimization of the sample lattices
  • 2.3 Details of the proposed LSTO method
  • 2.3.1 Design of lattice structures with extreme mechanical properties
  • 2.3.2 Parameterized property modeling for the proposed candidate lattice
  • 2.3.3 Formulation of the LSTO problem
  • 2.3.4 Sensitivity analysis
  • 2.3.5 Numerical implementation
  • 2.4 Numerical examples
  • 2.4.1 A 3D three-point bending beam
  • 2.4.2 A 3D L-bracket structure
  • 2.5 Mechanical test
  • 2.6 Applications to part design
  • 2.7 Extension to incorporate macroscopic topological changes
  • 2.8 Discussion and conclusion
  • Appendix MATLAB codes for the 3D three-point bending beam case
  • References
  • Chapter 3 Multiscale Topology Optimization for Solid-lattice-void Hybrid Structures through An Ordered Multi-phase Interpolation
  • 3.1 Introduction
  • 3.2 Method
  • 3.2.1 Design of extreme anisotropic lattice structures
  • 3.2.2 Parametrized modeling for the candidate lattice
  • 3.2.3 The ordered solid-lattice-void interpolation
  • 3.2.4 Formulation of the optimization problem
  • 3.2.5 Sensitive analysis
  • 3.2.6 Optimization procedures
  • 3.3 Numerical examples
  • 3.3.1 L-bracket beam
  • 3.3.2 MBB beam
  • 3.3.3 Additive manufacturing and mechanical tests
  • 3.3.4 A bone remodeling example
  • 3.4 Conclusions
  • Appendix MATLAB reference codes for MBB beam
  • References
  • Chapter 4 Comprehensive Clustering-based Topology Optimization for Connectable Multi-scale Additive Manufacturing Structures
  • 4.1 Introduction
  • 4.2 Homogenization theory
  • 4.3 Methodology
  • 4.3.1 A LSTO method by using multi-variable lattices
  • 4.3.2 Clustering strategy for post-processing
  • 4.3.3 Inverse homogenization-based MTO
  • 4.4 Numerical implementations
  • 4.5 Numerical examples
  • 4.5.1 Simply supported beam
  • 4.5.2 L-bracket
  • 4.5.3 Cantilever
  • 4.6 Additive manufacturing and mechanical test
  • 4.7 Extensions and discussions
  • 4.7.1 The influence of varying initial designs for guaranteeing connectivity
  • 4.7.2 Further clustering for the highest-density sub-domain
  • 4.7.3 The influence of different lattice types
  • 4.8 Conclusion
  • Appendix MATLAB reference codes for the simply supported beam
  • References
  • Chapter 5 Topology Optimization for Vat Photopolymerization 3D Printing of Ceramics with Flushing Jet Accessibility Constraint
  • 5.1 Introduction
  • 5.2 Problem formulation
  • 5.2.1 Material model
  • 5.2.2 Optimization problem
  • 5.2.3 Sensitivity analysis
  • 5.3 Numerical examples
  • 5.3.1 2D cantilever beam
  • 5.3.2 3D MBB beam
  • 5.4 CSL 3D printing experiment
  • 5.5 Engineering application: a pillow bracket part
  • 5.6 Conclusion
  • Appendix MATLAB codes for 2D cantilever beam case
  • References
  • Chapter 6 Path-driven Shell Lattices Designed for Continuous Fiber Composite 3D Printing
  • 6.1 Introduction
  • 6.2 TPMS lattices
  • 6.3 Path-driven shell lattice design
  • 6.3.1 Periodic function
  • 6.3.2 Parametric generation of path-driven shell lattices
  • 6.4 Shape optimization
  • 6.4.1 Mechanical property optimization
  • 6.4.2 Surface curvature optimization
  • 6.5 Fabrication and experimental method
  • 6.6 Result and discussion
  • 6.6.1 PDSLs with different parameter configurations
  • 6.6.2 Mechanical property optimization
  • 6.6.3 Surface curvature optimization
  • 6.6.4 Fabrication and experimental result
  • 6.7 Conclusion
  • References
  • Chapter 7 Stress Constrained Topology Optimization of Heterogeneous Lattice Structures
  • 7.1 Introduction
  • 7.2 Technical details
  • 7.2.1 Homogenization of the composite materials
  • 7.2.2 Ordered SIMP stress interpolation for solids
  • 7.2.3 Failure criteria identification and ordered SIMP stress interpolation for lattices
  • 7.3 Optimization problem formulation
  • 7.4 Numerical experiment
  • 7.5 Conclusion
  • Appendix MATLAB codes for 2D L-bracket case
  • References
展开全部

评分及书评

尚无评分
目前还没人评分

出版方

电子工业出版社

电子工业出版社成立于1982年10月,是国务院独资、工信部直属的中央级科技与教育出版社,是专业的信息技术知识集成和服务提供商。经过三十多年的建设与发展,已成为一家以科技和教育出版、期刊、网络、行业支撑服务、数字出版、软件研发、软科学研究、职业培训和教育为核心业务的现代知识服务集团。出版物内容涵盖了电子信息技术的各个分支及工业技术、经济管理、科普与少儿、社科人文等领域,综合出版能力位居全国出版行业前列。